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examination room

Question 1-10 11 12
Total

/110 /15 /15

Total marks — 102
Section |
10 marks
Attempt Questions 1 — 10

Pages 3—6
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Section |

10 marks
Attempt Questions 1 — 10
Allow about 15 minutes for this section

Use the Objective Response answer sheet for Questions 1 — 10

1 The angles made between v=0V where V is the point (5, -3, 3) with the positive direction of
X, y and z axes respectively are

(A)  40°19', 117°14' and 62°46'
(B)  40°19, 62°14' and 62°46'
(C)  180°, 53°8' and 53°8'

(D)  0° 126°52' and 53°8'.

(2- 306

2 By using the mod-arg form or otherwise, can be expressed as:

(1+i)*
(A) 16+0i
(B) -16+0i
(C)  4+0
(D) —4+0i

3. [Itis stated “If anyone has tested positive for COVID 19, then they are to isolate for 7 days”. The
converse of that statement is:

(A) If anyone has not tested positive for COVID 19, then they are not to isolate for 7 days.
(B) If anyone has not isolated for 7 days, then they are not tested positive for COVID 109.
(C) If anyone has isolated for 7 days, then they are tested positive for COVID 19.

(D) If anyone has isolated for 7 days, if and only if they are tested positive for COVID 19.
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3

4  The integral of j 4X8 dx =
1+Xx

(A)  4ln(1+x°)+C
(B) ;In(1+x8)+c
(C) 4tan?(x*)+C
(D)  tan(x*)+C

5  Which of the equations best represents the given diagram of complex number z, where ae Z ?

a NOT TO
SCALE

D) arg| ’
z
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The integral of jlnx dx is

(A) xInx-1+C
(B) xInx+1+C
(C) xInx—x+C

(D) xInx+x+C

The Cartesian equation of a sphere is X2 + y2 +2° —4x+102+20=0. The vector equation of the
sphere is

2 2

(A) r-|0]|=3 (C) r—|0| =9
5 5
(2] 2

B) r—|0|=9 D) r-|0]|=3
5 5

30 , .0,

Which of the following is an expression for e'% 4 ¢l
(A) 2sin 09e'20
(B) 2cos 0e'20
(C) 2sin 20e'?

(D) 2cos 20e'?
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10

Consider the statement:
'IGxeR, Inx=1and x>2.'

Which of the following is the negation of the statement?
(A) IxeR, Inx=lor x<2.
(B) 3IxeR, Inxzland x<2.
(C) W¥xeR, Inxzlor x<2.

(D) VxeR, Inx=1and x<2.

Triangle OAB has position vectors a=0Aand b =0B. The triangle inequality in vector form
states that a+b < a + b . Equality of that statement holds if and only if

(A) OA|OB

(B) OALOB

(C) points O, A and B are collinear

(D) OA=O0B

End of Section |
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Section 11

90 marks
Attempt Questions 11 — 16
Allow about 2 hours and 45 minutes for this section

Answer each question in a new writing booklet. Extra writing booklets are available.

In Questions 11 — 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a new writing booklet

(a) (i) Express each of the following complex numbers z; = —2 ++/2i and z, =+/3+i 2
in modulus-argument form.

(if) Represent the two complex numbers z; and z, as vectors on an Argand diagram. 1
(iii) Find the exact values of arg LEJ and arg(z;+12,). 2

Zp
(b) Find Isinsxcos7 x dx 2

(©) Find j X by letting u=— 2
e -1 e”
(d) (i) By applying de Moivre’s theorem and by expanding (cosé+isin 0)5 , 2
show cos560 =16cos® @—20cos® #+5cos@ as a polynomial in cosé.
(if) Solve the equation cos50 =-1 for 0< 6 < 2x. 4

Hence show that cos% + cos%Z = % and find the value of cos%cos%.

End of the Question 11.
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Question 12 (15 marks) Start a new writing booklet

(@) Prove by contradiction that logs 7 is irrational.

(b)  Find the integral I sec® x dx

(c) If @ isthe complex cube root of unity, evaluate (1—3a)+a)2)(1+a)—8w2).

(d) NOT TO

SCALE

30°

AABC is drawn in the Argand diagram above where #/BAC =30°, A and B are

the points (-6, 2) and (-2, 4) respectively. The length of side AC is twice the length

of side AB.
Q) Show that the complex number that represent vector AB is 4 + 2i.
(i) Find the complex number that the point C represents.

(ili)  Find the complex number that the point D represents such that AABD is an
equilateral triangle.

(e) Use the principle of mathematical induction to prove that:

3" >1+2n where nis an integer, n>1

End of Question 12
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Question 13 (15 marks) Start a new writing booklet

(@)  Use the substitution t = tan 2 to find in simplest exact form of - ! dx
2 1+2sin X —cos x

(b) Inthe Argand plane, sketch |z—-1-3i[<2 £<argz££.
gandp 4 2

4x -1

2

(c) Find the primitive of :
X© +2X+6

(d) Find & and g given that 2°+62—4\2i =(z—a)’ (z- )

(e) Consider the sphere S, centred at point C(2, -1, 0) with radius +/29. The line L with

X=4A+1
parametric equations sy =1 intersects the surface of the sphere S at points P and Q.
2=21+3

(i) Find the coordinates of the points P and Q.
(if) A line parallel to line L is a tangent touching the sphere S at a single point, R.

Find the possible coordinates of point R.

End of Question 13
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Question 14 (15 marks) Start a new writing booklet

1

(@) EvaluateJ. xtan™ x dx.

1
3

(b)  Use the substitution of x=3sin & to evaluate
3
2
dx
2\2

(c) A, Band C are three collinear points with position vectors a, b and c respectively.

Point B lies between A and C with BC = ; AB . Find cintermsof a and b.

(d)(i) Letxandy be real numbers such that x>0 and y>0.

2+y2

Prove that > Xy.

(i) Suppose that a, b and c are real numbers, prove that a*+b*+c* > a’b? +a%c? +b’c?.
(iii) Show that a?b? +a?c? +b?c? > a’bc +b2ac+c2ab .

(iv) Deduce thatif a+b+c=d, then a* +b*+c* > abed.

End of Question 14
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Question 15 (15 marks) Start a new writing booklet

@ (@) If x>0, show that <

1
x2+4 4

(i) By integrating both sides of this inequality in part (i) with respect to x between
the limits x = 0 and x = ¢, show that

1
g2 2%042 +1 for a >0.

(b)  Find the geometrical shape represented by the complex number z if @ = Z%

given that @ is purely imaginary.

(© Find J-l_—xdx.

1+x

(d Letz= e'? where z = 0.

(i) Show that z" —in =2isinn@ for positive integers n>1.
z

5
(i) Expand (z—lj and show that sinsezé(sin 56 —5sin360+10sin 0).
z

(iii) Find IsinSGdH.

End of Question 15
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Question 16 (15 marks) Start a new writing booklet

@ If P(x)=3x*-11x% +14x* ~11x+3, show that

P(x)=x? {3(x+ )1(}2 —11(x+ )l(j+8}

and hence solve P(x)=0 over C and factorise P(x) over R.

(b) Show that z+w=1z+w forany complex numbers z and w.

(c) Disprove this statement.

“There exists ae N such that a® +9a+20 isa prime number.”

(d) Consider the lines Ly and L, determined by vector equations

3 2 -1 1
L: r=l2|+4]-1 and L: r=| 1 |+ul 1
-1 1 0 -1

(i) Show that L, and L, intersect and are perpendicular, stating the coordinates of the

point of intersection.

(if) Deduce that the plane containing the linesL; and L, has an equation determined by

X 1 2 1
y|=| 3 |+a|-1|+Db| 1 | for parameters a and b, and hence that this plane has
z -2 1 -1

equationy +z=1.

(iii) Find the perpendicular distance from the origin to this plane.

End of Examination
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HGHS Ext 2 2022 TRIAL HSC SOLUTIONS

Marking Guidelines:

Multiple-choice Answer key

=t (\O ([CO|~J [\ [N | || DN [

olleli--irdieli=li=lell:2ls

1 5
i m’]

-6, =40°19", Hj =117°14", and

g :cos_l( -3

)

Correct answer: 83.33%

0, = 62°47" (A)

oz () sise[ ]

(=" (i) s o

3 26 cis (—27z)

(\/5)4 cis
64(1+0i)
=—16

Correct answer: 83.33%

(B)

Statement: IfP = Q
Converse: IfQ = P

Correct answer: 88.89%

©

4x3

dsz. 3 dx
1+(x4)

= tan_1 (x4 ) +C

j 4x3
1+x8

Correct answer: 88.89%

(D)
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Ends Correct answer: 88.89%
a

Starts

Anticlockwise direction i.e. positive direction

So arg(z+ai)—arg(z—a)= 76[

arg(z+aiJ:” D)

z—a 6

Correct answer: 100%

J‘lnx dx=uv—ju'v dx whereu=Inx v'=1

u= V=X
X
=x1nx—jl dx
=xlnx-x+C ©
2 +y2 122 _4x+102+20=0 Correct answer: 77.78%

x2—4x+y2+22+102=—20

X2 —dx+4+y? +22+102+25=-20+4+25
(x=2)*+3? +(z+5)* =9

Centre (2, 0, -5), radius = 3 units

2
In vector form:  r—| 0 | =3 (A)
-5
. . . 0,
ez3¢9 +e”9 — cis360 +cis O Correct answer: 61.11%

=(cos360+cos 8)+i(sin 36 +sin 0)

360+6 30-60
=2cos cos
2 2
.. (360+60 30-6
+2isin cos
2 2

=2co0s26cosf+2isin26cos b
=2cos(cos260+isin20)

—2cos@e'2? (B)
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. Correct answer: 88.89%
Key words Negation
dxeR VxeR
Inx=1 Inx#1
and or
x>2 x<2.
©)

10.

Correct answer: 38.89%

1Q
+
1S~
IA

1Q

+
1S

Equality of that statement holds if and only if points O, 4 and

B are collinear (C)
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QUESTION 11 (a)
@D . z=— 2+ 2

z) = (— 2)2+( 2)2 and argzlztan_l[_ 22J (QI)

= 242 =n-"
4
5 :37Z
4
Sz =2cis

7
= 3+1 =
6
=2
S.zy=2cis
(ii).
2
2 3 %)
4 Va
6
2 2
-2

(i) (IJ
c.arg =argz, —argz,

)
3t 7
46
97 -2r
12
Iz
12

(QII) - Need to pay attention
to which component has a
negative value as this affects
the argument of the complex
number.

Even though the question
specifically stated using
vectors, only 44% complied.

If using argument on the
Argand diagram, students
should have an open circle at
the origin. This is poorly done.

Future recommendation: since
both moduli are of the same
length, in future draw a circle
in dashed line.

Mostly done well.
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QUESTION 11 (a)

(iii)cont Please note:
arg(z +z, ) #argz +argz,

IE4
£2,0Z, = 12 Many students did not realise
ZPOZ, = K arg[ 21 } = /Z,0Z, . Hence
24 %
Car (z ‘s ) Iz L7 . they started from the
—aglaTa)= 24 6 6 Cartesian form and worked
17 through leaving answers as
24 tan”'( 3+ 2+ 6+2) or
unsimplified form
tan~! 2+1 and in
3- 2
decimal value 1.439896...
QUESTION 11 (b)
. 3 7 ) .. Disappointing performance for
sin” xcos' x dx = | sin” xcos’ xsinx dx a straight forward question.

= J-(l — cos? x)cos7 xsin x dx
= J-(cos7 x—cos’ x)sinx dx

= —J(cos7 x—cos’ x)(—sin x) dx

An attempt to make it a double
angle trigonometry but got

OR jsin3 xcos’ x dx = J-sin3 xcos> xcos* x dx
lost. — Not an efficient method.

= J-(sinxcos x)3 cost x dx

= :3 (sin 2x)3 cos® x dx

= ! sin’ 2x(cos2 x)2 dx
8 [ 4
1.5 [1 2

= | sin’2x| _(1+cos2x)| dx
8 2

2022 Trial HSC Mathematics Extension 2



QUESTION 11 (b) continues

32

32

; jsin3 2){%(1 +cos 2x)2} dx

?’szlsin2 2x(1 +cos 2x)2 sin 2x dx
_L (1 —cos? 2x)(1 +cos 2x)2 sin 2x dx
32
= LJ‘(l —cos? 2x)(1 +2c082x + cos’ 2x)sin 2x dx
= Lj(l +2¢082x +cos2 2x —cos> 2x — 2¢cos> 2x —cos 2x)sin 2x dx
=i (1+2cos 2x—2cos> 2x —cos? 2x)sin 2x dx
32
1 . 1 3 4 )
=— | sin2x dx+— (20052x—2cos 2x—Cos 2x)s1n2x dx
32 32
_ 1 fcos2x) 1
32 2 2

cos2x

J.(Z cos 2x —2¢os> 2x —cos? 2x) sin 2x dx

.4
02 sin” 2x 05
1 |sin”2x ( ) sin” 2x L C

64 32

cos2x sin®2x sin*2x cos’ 2x
~ — + + +C

2% 2 2x4  2x5

64 128 128 320
QUESTION 11 (¢)
dx 1 . 1 Few students got full mark.
Jo o where u = - Ty Area of concern are:
e —1 (1) Students having
1 substitution problem
X= ln; (2) Students not
recognising that
x=-Inu 1 O
- du=cos u+C
ax __1 1-u?
du u
dx = —ldu
u
LYy
_ J' _u
2
BE
u
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QUESTION 11 (c)continues

1

:—J‘ U__ du
ulz—l
1

z—j U __ du
1-u?
u2

u
1
=J.— du
1-u
—cos lu+C

=cos™! (LJ +C
ex

QUESTION 11 (d)

(1)

(cos @ +isin 9)5 — cos° 0+ 5icos* @sin@—10cos> Gsin’ 6
—10icos” @sin> @+ 5cosBsin® G +isin’ 6
By de Moirve’s theorem,
c0s 50 +isin 50 = cos® @+ 5icos* @sin @ —10cos’ Osin’ O
—10icos” @sin> @+ 5cosBsin® @ +isin’ 6
Equating real terms,
c0s 50 = cos® @ —10cos> @sin® 6 + 5cos Psin”* 6
2
=cos’ O—10cos’ 19(1—cos2 9)+5COSH(1—COSZ 0)
=cos’ O — 10(cos3 0 —cos’ 9)
+5 0059(1 —2cos’ O +cos™ (9)
= cos’@ —10cos> O
+10cos> @

+5c0s8° @—10cos> O +5cosb

Mostly done well.
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QUESTION 11 (d) continues
(@ | - cos50=16cos’ @ —20cos> O +5cosd (as required)

(i) | cosS58=-1 for 0<O<L 2. Disappointing performance for
B B a straight forward polynomial
50=2kr+r, k=0,1,2,3,4 question.
2k + 7 (2k+1)7r Area of concern are:
0= 5 = 5 (1) Students not relating
equivalent trig. values
When k=0, 6= %, one root is cos% e.g. cos7—” = cos3—7Z

3 37 97 T
When k=1, 0=?, one root is cos? COS?—COS—

(2) Students have forgotten
sums and products of

When k=2, 9=5—ﬂ=ﬂ,0ner00tis coswt=-1 !
5 roots of polynomial.

When k=3, 6 :7%, one root is cos%[: cos3—7Z

5

When k=4, 6 :9?7[, one root is cosg?ﬁ: cosZ

Given cosS50 =-1

i.e. 16cos’ 6 —20cos> O+5cosf=—1

16c0s> 0 —20cos> @ +5cosO+1=0

a=16,b=0,c=-20,d=0,e=5,f=1

Sum of single roots:

V4 kY4 T 9 b
cos—+cos——1+cos—+cos—=——
5 5 a

T RY/4 RY/4 T
coS—+cos——1+cos—+cos—=0
5 5 5
2cos£+2cos3—ﬂ=l
5 5

2(cos£+cos3—ﬂ] =1
5 5

V4 3z 1 )
;.COS—+cos— =— (as required
s S5 (as required)

Product of 5 roots:

oo )
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QUESTION 11 (d) continues

(1) ( ﬂj( 37[)( 3%)( ﬂj_ 1
—| cos— || cos— || cos— || cos— |=——
5 5 5 5 16

T RY/4
cos—cos? ==

Since cos%>0 and cos%[<0,

T RY/4 1
" COS—COS— = ——
5 5 4
QUESTION 12 (a)
To prove by contradiction that logs 7 is irrational. Disappointing performance;
Areas of concern:
Proof: Assume that logs 71s rational (1) students did not notice

importance of the word

:Assume” in the

contradiction method.
(2) Explanation needs to

ie. 3{p, q}eN, logs7= P \where p and g are relative
q

PTIMES. be succinct.
qlogs7=p
logs 77 =p
79 = 5P

LHS =71
=T7x7x7Tx...1.e. 7 is a factor of LHS
RHS =57
=5x5x5x... i.e. 5 is a factor of RHS
but clearly neither 7 is not a factor of RHS nor 5 is a

factor of LHS so there is a contradiction.

Hence logs 7 is irrational.

2022 Trial HSC Mathematics Extension 2



QUESTION 12 (b)
Let I=Isec3x dx

= J-secz xsecx dx

:uv—‘[u'vdx where u=secx and v'=sec’ x

u'=secxtanx v=tanx

2
:secxtanx—J.secxtan x dx

=secxtanx— secx(sec2 x—l) dx
o

=secxtanx — (sec3 X —Ssec x) dx

=secxtanx— sec3xdx+Jsecx dx

secx+tanx
dx

[ =secxtanx—71 + | secxx
secx+tanx

2
sec” x+secxtanx
dx

2] =secxtan x +
secx+tanx

2] =secxtanx+1In secx +tan x

1 1
s = 2secxtanx+21n secx+tanx +C

QUESTION 12 (¢)

Given o 1is the complex cube root of unity

i.e. =1
a)3=1
@ —-1=0

(a)—l)(1+a)+a)2)=0 but w#1

lro+a* =0

2 2 2

l+w=-w" or w+w =-1orl+w

10

=-0

Disappointing performance
Over 50% had problem with
this.

Mostly done well.
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QUESTION 12 (c) continues
(1—3a)+ a)z)(1+a)—8a)2)

((1+0%)-30)((1+0)-s07)

=(-o- 3(0)(—(02 - 8602)

=(—4o) (—9&)2 )

— 36" and since @° =1

=36

QUESTION 12 (d)

(1) Done well.
30°
AB=0B-04

2] [-6

|4 2

[4

2

S AB=4+2i
(i) OC =04+ AC where AC =2 AB Mostly done well.

E=2cis(—76r}(4+2i)

=2£ 23 —;i](4+2i)
=( 3-i)(4+2)

—4 342 3i—4i+2
=(4 3+2)+(2 3—4)1‘

Areas of concern:

(1) AC =2 4B does not mean
AC =24B

(i1) Some students are

forgetting AC and OC are
two different vectors.

(i11) Some students did not pay
attention to the fact that

AB is rotated 30°
clockwise hence (—30° ) to

obtain AC .

11
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13
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QUESTION 12 (¢)

Step 1: To prove true for n =2 Mostly done well.
LHS =37
RHS =2=2(2)+1
.. LHS > RHS
Hence true forn =2
Step 2: Assume true for n = k where k=2, 3,4, ...
3> 1+3k
Step 3: To prove true forn =k + 1
3*1 > 1+ 3(k+ 1)
LHS = 3k*1
=3 x 3k
> 3(1+3k) Assumptionforn =k
>3(1+k+ 2k)
>3x%x2k+3(k+1) also 3x2k>1
>1+3k+1)
= RHS
If true for n = k, hence proven true forn =k + 1.
Step 4: Since true for n = 2, hence proven true forn =2 + 1 =3,
n=3+1=4, and so on. .".true for all positive integers
n>1.
QUESTION 13 (a)
1 i Let 1 = tan> Mostly done well.
X et t =tan— .
1+ 2sinx — cos x > Areas of concern: '
(1) A few students did not
L recognise the fact that the
2 denominator of integrand can
x=2tan" !¢ be factorised, hence
A 2 subsequent method to use is
—= 5 partial fraction.
dt 1+t (ii) Some students did not learn
2 . . x
dx = 172 dt how to differentiate ¢ = tanE
+
* 1 2 (i11) Some students did not even
= Ly -2 1442 dt realised they have not
“1+2 (—2] -—— completed because their
1+1¢ 1+1¢ answer is in terms of ¢ and
* not x.
_ L2
J 4  1-t° 1+t
It
1+t 1+¢
13
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QUESTION 13 (a) continues

1 2
= > 3 2dt
(1+t )+4t—(1—t ) 1+¢
142
- 2 2 5 dt
J1+t"+4r—1+¢
= 22 dt
J 2t +4¢t
= 21 dt
J t°+2t
t(1+2)
A B 1 A B

=|—+——dt where =—+
t t+2 t(t+2) ¢ t+2

1=A(t+2)+Bt
when =0, 1=24

A=1
2

when r=-2, 1=-2B
1

B=-——
2
R L
2t t+2
= Llinf|-tm]r+2[]+C
2
=l In tani—ln tan£+2 +C
2 2 2
tanf
:lln tanﬁ —lln tan£+2 +C or —ln—2+C
2 21 2 2 tan >
an —+2
2
14
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QUESTION 13 (b)

Mostly done well.

Key Areas of focus:

@ open circles

@ Region should not be
shaded

® ® Solid arch
@ Centre of circle (1, 3) and
radius 2 units.
@
O]
@
@
QUESTION 13 (¢)
1 Mostly done well.
4x-1 2x—,
J- ) dx = 2-[ ) dx
X" +2x+6 X" +2x+6

P2x+2— ! -2

=2 5 2 dx .
J x"+2x+6

o (Zx + 2) -

=2 2 i

o x2 +2x+6

5 ¥ (2x+2 J‘
J x +2x+6 x2 +2x+6

=21n x* +2x+6 — 2( jJ‘ dx
X2 +2x+6

=2In x> +2x+6 -5 , ! dx
o (x +2x+1)+6—1

—2In x> +2x+6 —5 I dx

o ()C+1) +5
where f(x)=x+1

15
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T —=4¢"
ng—=¢g "
0=4¢+0¢C
—=g+0+p0

T ¥—=p9=2°0-q I=0

0=1T v—29+2=(2)d 31

J00reSL ¢ o1°s

0%(c +-)d
1T b-1T 9-1T 7=
T v-(c Fb+lzzﬁ=(zfﬂd
0=(c 1)~
1T b-1T 9+1T T-=

T 17—(Z !)9+€<Z !)Z(Z !)d

¢ 1¥=0
=0
9o-=_0¢
0=9+,0¢
o+ 6= ()
() 0=(0).d =1
J0 51001 PI[EA I8 D "0 “)001 9[qnOp © sey ()4 2ouIS
Koot TR sz ¢ Ao (7= (7=2)=()a =

Y03y 10U PIP S1UAPNIS AUB]
{ULIO0U0D JO BAIY
“J[9M 2UOp ASOIN (9-2) Z(”_Z):-’Z P—29+ 2

1T v-29+ 2=(2)d 1]

(P) €1 NOLLSANO

Q+[+x[_umg —9+XT+ XU[g=

9+Z([+x) ¢
X —Q+X7+ X U=
e I AR At

sanupuod (9) €1 NOLLSANO



QUESTION 13 (¢)

(1) A few students did not know
what to do.
(i1) Poor performance.
17
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le €Lz 9

(sj ¢le € LT 9
uf+ — - =
8 o x
¢
Z[ /A x>

(EUI_EJ_ZUI_[_E_E LT 9
vl 1z oz

{[(§j+lm_(ij}_“)+lm—(w f‘ngz—z==

€ €10 9
1 o oz

[xsru-v]

€

1 -
w T [E (9}&‘ € vie_
I L\z) 1 xjz
€
1

xp ¥l E__E ue) ¢ S—[ ue) t_
—(+)Jor ) e

I
€

2 L) () (50 om0t

(x+[)x (¢ ¢
xp (x x) | Z—Il[x _ueyx x} =
I
(x+17)x ¢
:‘n
I
X+
=n
x 7 ¢
I
: (x )+
=Aa :‘7’1
XT xZ
€ 4
i~

€
1

€

X=,4 = = =
‘syred Aq uoner3dajur asn o pue [%x)l_uel ooRuM AP A‘nJ‘ I[A”]

0} UdYM JSTU30931 0} UIBI[ I
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*10119 uonduosuen pue
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QUESTION 14 (a)cont.

_E_L_E_lm(ﬁ]
6 2743 9 3 (3

5
j dx 5 where x=3sinéd
2
(o)
ﬂ:%os@
do
dx=3cos0 db
3 T
When x=—, 0 =—
2 4
x=0 =0
z
4
:3J' cos@d@l
o (9-9sin” 0)’
i
4
:3"' cos@ do .
f (9(1—sin2 9))2
i
4
J‘ cos6 db
0(3200526’)2
i
4
=3J-—C°SH3 do
27cos’ 8
0
2
4
=lj 12 do
9J cos” @
0
i
4
:l-‘.seczédﬁ
9
0
:l[tan@]4

Mostly done well.
Area of concern:

1
5 =9sec’ x
9cos” x
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QUESTION 14 (b) continues

= l[tanﬂ—O}
9 4

1

9

QUESTION 14 (c)

Mostly done well.
QUESTION 14 (d)
@) Forall x>0, y>0, (x=y)’ 20 Mostly done well.
X - 2xy + y2 >0
x?+ y2 >2xy
2, .2
o Ty > xy (as required)
Mostly done well.

(i) Substituting x=a? and y =b?into part (i),
y

T ey

4 44
a +b
> a’b?

nat+br =240 —O
Similarly b*+ct22p%? —@
cArat>2% —0

O+@+0 2a*+2b* +2¢* 2 24%0% +2b%c? +2¢%a?

nat+ b+t 2 a?h? + b2 + PP (asreq’d)

20
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QUESTION 14 (d)

(iii)

From part (i) x° + y2 > 2xy
Let x=a and y=5, a’ +b*>2ab

c? (az +b2) >2abc? — @
Similarly a’ (b2 + cz) >2bca® — @
b? (02 +a2) >2cab’? — O
O+0+0
c? (a2 +b2)+a2 (b2 —i—cz)—i-b2 (02 +a2)2 Z(ab02 +bea? +cab2)
c2a? + 2% 1 a*b? + aPct + b + et > Z(abc2 +bea’ + cabz)

2a%b% +2b%c* +2c%a” > 2(abc2 +bca’ + cabz)
L a’b? +b2c? +c2a? > ctab +a’be +b*ca
(as required)

Students that know it,
permed well. 40% did not
know what to do.

(iv)

2p? £ b2 + c2a?

a’b? +b*c? +c*a® > ctab + a*be + b ca

From part (ii) at+b*+c*>a
From part (iii)
at+ b+t > a?h? + b2 + *a? > cPab + abe + bea
nat+bt 1t >cPab+atbe +bPea
nat+bptect > cab(c+a+b)

Since a+b+c=d

sat+b*+ ¢t > cabd (as required)

Students that know it,
permed well. 40% did not
know what to do.

QUESTION 15 (a)

(1)

(x=2)*>0, x>0

x2—4x+4>0

x> +4>4x
4x

(as required)

Mostly done well.
Area of concern: students not
mentioning x >0
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QUESTION 15 (a)
(i) 2): A ‘11 [from part (1)]
X

[04

j dx where >0
x° +4

0

2 deIJ‘Idx
2) x*+4 4

0{

o ¢
(e}

1 (a +4)—ln4sla
2
2
nl @ +4 Sla
4 2
o’ +4 :
4 <e? (Since f (x)—e 1S an increasing
function)
2 1
o +4£eza
4 4

el 20; +1 (as required)

QUESTION 15 (b)

w:z—2 Let z=x+1iy
z

w=1-
z

- 2 X
X+iy x-—iy
2(x—Uﬁ

== 5 5
X +y

1 2x N 2iy

x2+y2 x2+y2

Since @ is purely imaginary, i.e. Re(@)=0

2
al- X ,=0
X +y

22

Mostly done well.
Area of concern: Poor
technique with log. Law.

1ln(x2 +4)¢ ! Inx*+In2
2 2

Many students did not know
what to do.
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QUESTION 15 (b) continues

x2+y2—2x_

)62+y2

0
x2+y2—2x:O
)cz—2x+y2 =0

x> —2x+1+y? =0+1
()c—1)2+y2 =1

soz=1=1

Hence the locus of z is a circle of radius 1 and centre (1, 0)

QUESTION 15 (¢)

1-x dy — 1-x l—xdx
1+x 1+x 1—-x
o 2
1—
= ( xg dx
o 1-x
_ 1-x dx
o 1—x2
_ 1 X dx
L 1—x2 1—X2
] 1
= I —x(l—xz) 2 dx
o l—xz
* _1
= ! dx—'[x(l—xz) 2 dx
B

=sin”! x+ij—2x(l—x2)_; dx

=sin_1x+(l—x2)2 +C or =sin_

1

1)C-I-

23
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QUESTION 15 (d)

(1) z" =(cosO+isin)"
=cosnf +isinnd (de Moirve’s theorem)

L: cos@+isin@)”"
Z”l

=cos(—n)@+isin(-n)0
=cosn@ —isinnd
1 L. ..
= z" ——= (cos né +isin né?)—(cos né —isin né?)
z
= cosn@ +isin nd —cos n@ +isin nd
n

szl = Ln =2isinnd (as required)
z

TR0

sl 3] (4
(-l

(2isin6)’ = (2isin56)—5(2isin36)+10(2isin )
32isin’ O = 2i(sin560 —5sin36 +10sin 0)
16sin° 6 = sin 50 — 5sin 30 +10sin &

~.sin’ @ = %(sin 50 -5sin30+10sin@) (as required)

Sl j sin’® 0 d@:% j (sin 50— 5sin30+10sin 6) 40

:L —C0559+5COS39—10c059 LC
16 5
cos50 5cos30 5Scosé
== + - +C
80 48 8
24
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QUESTION 16 (a)

P(x)=3x"—11x" +14x> ~11x+3

=x2(3x2—11x+14—£+%]
X X

=x2{[3x2+ij—[11x+£]+14}

x2 X

Y Y (SR N T SN P
x2 X

st (2] <2 so o
o] oo
()= HHLT _11(x+3+8} (s require)
()0
h{se] s L)es
et
R

3(x2+1)—8x:0 2 —x+1=0
3x2 —8x+3=0 x:li 1-4
2
8i1/64—4(3)(3) 1+J3
X = =
2(3) T
8+247 1+i3
X = X =
6 2
25
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QUESTION 16 (a) continues

.‘.P(x):(x_4_3 7J[x_4+ 7

QUESTION 16 (b)

QUESTION 16 (¢)

QUESTION 16 (d)

(1) 3+2A=-14u —@
2-A=l+uy —@
—1+A=—u —0

0-@0 1+31=-2
34=-3
SA=-1—®

Sub @ into ® 3-2=-1+pu

SopU=2

Sub A=-land x=2into @, LHS =-2

26
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QUESTION 16 (d) continues

(1) RHS =-2
~.LHS =RHS
Hence there are a pair of unique values of 4 and x that

satisfy the three equations simultaneously, hence the lines
intersects at a common point.

X —1] 1 1
Atintersection, | y [=| 1 |+2| 1 |=| 3
z|] |0 -1 -2
21 [ 1]
Also [-1|e| 1 [=2-1-1=0
1| [-1]

Hence the lines intersect at right angles at (1, 3, -2).

(ii) 2
Unit vectors in the directions of the perpendicular vectors | —1
1
1
and | 1 | from the basis of a plane in 3D space so that linear
-1
combinations of such vectors determine a plane through the
1
origin. Addition of the vector | 3 | translate the plane to pass
-2
through the point of intersection of the lines L1 and L.
Hence the unique plane containing L1 and L> has equation

X 1 2 1
v|=| 3 |+a|-1|+b| 1 | for parameters a and b.
z -2 1 -1

Note that b = 0 gives a vector equation L; and a =0 gives a
vector equation for L since (1, 3, -2) lies on both lines.

x=14+2a+b..Q1)
For all points on this plane, y=3-a+b... (2)

z==2+4+a-b.. (3)
(2)+(3) gives y+z=1

Hence the equation of the planeis y+z =1.

27
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QUESTION 16 (d)

(ii1) | Method 1:
Let P(x, y, 1 - y) be a point in the plane y+z=1. The

perpendicular distance from the origin to this plane is the square

root of the minimum value of |OP|2 =x*+y*+(1- y)2

|0P|2 =x° +2(y—lj2 +l.
2 2

1
The expression has a minimum value of — when x =0 and y = 5

Hence the perpendicular distance from the origin to the plane

.1 .
y+z=1 18 —=units.

N

Method 2:
u 2 1
Consider the vector | v | perpendicular to both | -1 | and | 1
w 1 -1

2u—v+w=0...(1)
u+v-w=0... (2)
(H+@) 3u=0
~u=0
LV=w
0

Hence | 1 | is a vector through the origin which is perpendicular to both
1
2 1
—1|and| 1 |, and hence to the plane defined in (ii), and meets this
1 -1
plane at the point where X =0 and y =z and y+ z =1, that is the point

0, %, %) . Hence the perpendicular distance from the origin

1V (1Y 1
to the plane in (ii) is 0+(Ej -{EJ zﬁunits.

THE END
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