HORNSBY GIRLS HIGH SCHOOL

Mathematics Extension 2

Year 12 Higher School Certificate Trial Examination Term 3 2022

STUDENT NUMBER:

General Instructions	Total marks – 102
 Reading Time – 10 minutes 	Section I Pages 3 – 6
• Working Time – 3 hours	10 marks
• Write using black pen	Attempt Questions 1 – 10
Black pen is preferred	Answer on the Objective Response Answer Sheet
 NESA-approved calculators and drawing 	provided
templates may be used	Section II Pages 7 – 12
• A reference sheet is provided separately	90 marks
■ In Questions 11 – 16, show relevant	Attempt Questions 11 – 16
mathematical reasoning and/or	Start each question in a new writing booklet
calculations	Write your student number on every writing booklet
• Marks may be deducted for untidy and	
poorly arranged work	
• Do not use correction fluid or tape	

• Do not remove this paper from the examination room

Question	1-10	11	12	13	14	15	16	Total
Total								
	/10	/15	/15	/17	/15	/15	/15	/102

This assessment task constitutes 30% of the Higher School Certificate Course School Assessment

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the Objective Response answer sheet for Questions 1 - 10

- 1 The angles made between $y = \overrightarrow{OV}$ where *V* is the point (5, -3, 3) with the positive direction of *x*, *y* and *z* axes respectively are
 - (A) 40°19', 117°14' and 62°46'
 - (B) 40°19', 62°14' and 62°46'
 - (C) 180°, 53°8' and 53°8'
 - (D) 0° , 126°52' and 53°8'.
- 2 By using the mod-arg form or otherwise, $\frac{(1-\sqrt{3}i)^6}{(1+i)^4}$ can be expressed as:
 - (A) 16 + 0i
 - (B) -16+0i
 - (C) 4 + 0i
 - (D) -4+0i
- **3.** It is stated "If anyone has tested positive for COVID 19, then they are to isolate for 7 days". The converse of that statement is:
 - (A) If anyone has not tested positive for COVID 19, then they are not to isolate for 7 days.
 - (B) If anyone has not isolated for 7 days, then they are not tested positive for COVID 19.
 - (C) If anyone has isolated for 7 days, then they are tested positive for COVID 19.
 - (D) If anyone has isolated for 7 days, if and only if they are tested positive for COVID 19.

- 4 The integral of $\int \frac{4x^3}{1+x^8} dx =$
 - $(A) \qquad 4\ln\left(1+x^8\right)+C$
 - $(\mathbf{B}) \qquad \frac{1}{2}\ln\left(1+x^8\right) + C$
 - (C) $4 \tan^{-1}(x^4) + C$
 - (D) $\tan^{-1}(x^4) + C$
- 5 Which of the equations best represents the given diagram of complex number z, where $a \in Z$?

6 The integral of $\int \ln x \, dx$ is

- (A) $x \ln x 1 + C$
- (B) $x \ln x + 1 + C$
- (C) $x \ln x x + C$
- (D) $x \ln x + x + C$
- 7 The Cartesian equation of a sphere is $x^2 + y^2 + z^2 4x + 10z + 20 = 0$. The vector equation of the sphere is

(A)
$$\begin{vmatrix} r & - \begin{bmatrix} 2 \\ 0 \\ -5 \end{vmatrix} = 3$$
 (C) $\begin{vmatrix} r & - \begin{bmatrix} 2 \\ 0 \\ 5 \end{vmatrix} = 9$
(B) $\begin{vmatrix} r & - \begin{bmatrix} 2 \\ 0 \\ -5 \end{vmatrix} = 9$ (D) $\begin{vmatrix} r & - \begin{bmatrix} -2 \\ 0 \\ 5 \end{vmatrix} = 3$

- 8 Which of the following is an expression for $e^{i3\theta} + e^{i\theta}$?
 - (A) $2\sin\theta e^{i2\theta}$
 - (B) $2\cos\theta e^{i2\theta}$
 - (C) $2\sin 2\theta e^{i\theta}$
 - (D) $2\cos 2\theta e^{i\theta}$

9 Consider the statement:

$$\exists x \in R, \ln x = 1 \text{ and } x > 2.'$$

Which of the following is the negation of the statement?

- (A) $\exists x \in R, \ln x \neq 1 \text{ or } x \leq 2.$
- (B) $\exists x \in R, \ln x \neq 1 \text{ and } x \leq 2.$
- (C) $\forall x \in R, \ln x \neq 1 \text{ or } x \leq 2.$
- (D) $\forall x \in R, \ln x \neq 1 \text{ and } x \leq 2.$
- 10 Triangle *OAB* has position vectors $\underline{a} = \overrightarrow{OA}$ and $\underline{b} = \overrightarrow{OB}$. The triangle inequality in vector form states that $|\underline{a} + \underline{b}| \le |\underline{a}| + |\underline{b}|$. Equality of that statement holds if and only if
 - (A) $\overrightarrow{OA} \parallel \overrightarrow{OB}$
 - (B) $\overrightarrow{OA} \perp \overrightarrow{OB}$
 - (C) points O, A and B are collinear
 - (D) $\overrightarrow{OA} = \overrightarrow{OB}$

End of Section I

Section II

90 marks Attempt Questions 11 – 16 Allow about 2 hours and 45 minutes for this section

Answer each question in a new writing booklet. Extra writing booklets are available.

In Questions 11 – 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a new writing booklet

- (a) (i) Express each of the following complex numbers $z_1 = -\sqrt{2} + \sqrt{2}i$ and $z_2 = \sqrt{3} + i$ in modulus-argument form.
 - (ii) Represent the two complex numbers z_1 and z_2 as vectors on an Argand diagram. 1

(iii) Find the exact values of
$$\arg\left(\frac{z_1}{z_2}\right)$$
 and $\arg(z_1 + z_2)$. 2

(b) Find
$$\int \sin^3 x \cos^7 x \, dx$$
 2

(c) Find
$$\int \frac{dx}{\sqrt{e^{2x} - 1}}$$
 by letting $u = \frac{1}{e^x}$ 2

(d) (i) By applying de Moivre's theorem and by expanding $(\cos \theta + i \sin \theta)^5$, show $\cos 5\theta = 16\cos^5 \theta - 20\cos^3 \theta + 5\cos \theta$ as a polynomial in $\cos \theta$.

2

(ii) Solve the equation $\cos 5\theta = -1$ for $0 \le \theta \le 2\pi$. Hence show that $\cos \frac{\pi}{5} + \cos \frac{3\pi}{5} = \frac{1}{2}$ and find the value of $\cos \frac{\pi}{5} \cos \frac{3\pi}{5}$.

End of the Question 11.

Question 12 (15 marks) Start a new writing booklet

(a) Prove by contradiction that $\log_5 7$ is irrational.

(b) Find the integral
$$\int \sec^3 x \, dx$$
 3

(c) If
$$\omega$$
 is the complex cube root of unity, evaluate $(1-3\omega+\omega^2)(1+\omega-8\omega^2)$. 2

 $\triangle ABC$ is drawn in the Argand diagram above where $\angle BAC = 30^\circ$, A and B are

the points (-6, 2) and (-2, 4) respectively. The length of side AC is twice the length

of side AB.

(i)	Show that the complex number that represent vector \overrightarrow{AB} is $4 + 2i$.	1
(ii)	Find the complex number that the point C represents.	2
(iii)	Find the complex number that the point D represents such that $\triangle ABD$ is an	2
	equilateral triangle.	

(e) Use the principle of mathematical induction to prove that:

3

2

 $3^n > 1 + 2n$ where *n* is an integer, n > 1

Question 13 (15 marks) Start a new writing booklet

(a) Use the substitution
$$t = \tan \frac{x}{2}$$
 to find in simplest exact form of $\int \frac{1}{1 + 2\sin x - \cos x} dx$ 4

(b) In the Argand plane, sketch
$$|z-1-3i| \le 2 \quad \cap \quad \frac{\pi}{4} < \arg z \le \frac{\pi}{2}$$
. 3

(c) Find the primitive of
$$\frac{4x-1}{x^2+2x+6}$$
. 3

(d) Find
$$\alpha$$
 and β given that $z^3 + 6z - 4\sqrt{2}i = (z - \alpha)^2 (z - \beta)$ 3

(e) Consider the sphere S, centred at point C(2, -1, 0) with radius $\sqrt{29}$. The line L with

parametric equations $\begin{cases} x = \lambda + 1 \\ y = \lambda \\ z = 2\lambda + 3 \end{cases}$ intersects the surface of the sphere *S* at points *P* and *Q*.

- (i) Find the coordinates of the points P and Q.
- (ii) A line parallel to line L is a tangent touching the sphere S at a single point, R. 2

2

Find the possible coordinates of point *R*.

Question 14 (15 marks) Start a new writing booklet

(a) Evaluate
$$\int_{\frac{1}{3}}^{1} \sqrt{x} \tan^{-1} \sqrt{x} \, dx.$$
 3

4

1

(b) Use the substitution of $x = 3\sin\theta$ to evaluate

- (c) *A*, *B* and *C* are three collinear points with position vectors \underline{a} , \underline{b} and \underline{c} respectively. **2** Point *B* lies between *A* and *C* with $|\overrightarrow{BC}| = \frac{1}{2} |\overrightarrow{AB}|$. Find \underline{c} in terms of \underline{a} and \underline{b} .
- (d)(i) Let x and y be real numbers such that $x \ge 0$ and $y \ge 0$.

Prove that
$$\frac{x^2 + y^2}{2} \ge xy$$
.

- (ii) Suppose that a, b and c are real numbers, prove that $a^4 + b^4 + c^4 \ge a^2b^2 + a^2c^2 + b^2c^2$. 2
- (iii) Show that $a^2b^2 + a^2c^2 + b^2c^2 \ge a^2bc + b^2ac + c^2ab$. 2
- (iv) Deduce that if a+b+c=d, then $a^4+b^4+c^4 \ge abcd$. 1

Question 15 (15 marks) Start a new writing booklet

(a) (i) If
$$x \ge 0$$
, show that $\frac{x}{x^2 + 4} \le \frac{1}{4}$. 2

(ii) By integrating both sides of this inequality in part (i) with respect to x between the limits x = 0 and $x = \alpha$, show that

2

$$e^{\frac{1}{2}\alpha} \ge \frac{1}{4}\alpha^2 + 1$$
 for $\alpha \ge 0$.

(b) Find the geometrical shape represented by the complex number z if $\omega = \frac{z-2}{z}$, 3

given that ω is purely imaginary.

(c) Find
$$\int \sqrt{\frac{1-x}{1+x}} dx$$
. 2

(d) Let
$$z = e^{i\theta}$$
 where $z \neq 0$.

(i) Show that
$$z^n - \frac{1}{z^n} = 2i \sin n\theta$$
 for positive integers $n \ge 1$. 2

(ii) Expand
$$\left(z - \frac{1}{z}\right)^5$$
 and show that $\sin^5 \theta = \frac{1}{16} \left(\sin 5\theta - 5\sin 3\theta + 10\sin \theta\right)$. 3

(iii) Find
$$\int \sin^5 \theta \, d\theta$$
. 1

(a) If
$$P(x) = 3x^4 - 11x^3 + 14x^2 - 11x + 3$$
, show that

$$P(x) = x^2 \left\{ 3\left(x + \frac{1}{x}\right)^2 - 11\left(x + \frac{1}{x}\right) + 8 \right\}$$

and hence solve P(x) = 0 over C and factorise P(x) over R.

(b) Show that
$$\overline{z+w} = \overline{z} + \overline{w}$$
 for any complex numbers z and w. 2

(c) Disprove this statement.

"There exists $a \in N$ such that $a^2 + 9a + 20$ is a prime number."

(d) Consider the lines L_1 and L_2 determined by vector equations

$$L_1: \quad \underline{r} = \begin{bmatrix} 3\\2\\-1 \end{bmatrix} + \lambda \begin{bmatrix} 2\\-1\\1 \end{bmatrix} \qquad \text{and} \qquad L_2: \quad \underline{r} = \begin{bmatrix} -1\\1\\0 \end{bmatrix} + \mu \begin{bmatrix} 1\\1\\-1 \end{bmatrix}$$

- (i) Show that L_1 and L_2 intersect and are perpendicular, stating the coordinates of the **3** point of intersection.
- (ii) Deduce that the plane containing the lines L_1 and L_2 has an equation determined by 2

 $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} + a \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$ for parameters a and b, and hence that this plane has

```
equation y + z = 1.
```

(iii) Find the perpendicular distance from the origin to this plane.

2

4

2

End of Examination

HGHS Ext 2 2022 TRIAL HSC SOLUTIONS

Marking Guidelines:

Multiple-choice Answer key

1	Α
2	B
3	С
4	D
5	D
6	С
7	Α
8	В
9	С
10	С

1	$1 + \sqrt{r^2 + (r^2)^2 + r^2}$	Correct answer: 83.33%
	$ y = \sqrt{5^2 + (-3)^2 + 3^2}$	
	$=\sqrt{43}$	
	$\theta_i = \cos^{-1} \frac{5}{\sqrt{43}}$, $\theta_j = \cos^{-1} \left(\frac{-3}{\sqrt{43}} \right)$ and $\theta_k = \cos^{-1} \left(\frac{3}{\sqrt{43}} \right)$	
	: $\theta_i = 40^{\circ}19', \ \theta_j = 117^{\circ}14', \text{ and } \ \theta_k = 62^{\circ}47'$ (A)	
2.	$\frac{\left(1-\sqrt{3}\right)^6}{2} - \frac{\left(\sqrt{1+3}\right)^6 \operatorname{cis} 6\left(-\frac{\pi}{3}\right)}{2}$	Correct answer: 83.33%
	$(1+i)^4 - (\sqrt{1+1})^4 \operatorname{cis} 4\left(\frac{\pi}{4}\right)$	
	$2^{6} \operatorname{cis}(-2\pi)$	
	$=\frac{1}{\left(\sqrt{2}\right)^4}\cos\pi$	
	$-\frac{64(1+0i)}{1+0i}$	
	$-\frac{1}{4(-1+0i)}$	
	= -16 (B)	
3.	Statement: If $P \Rightarrow Q$	Correct answer: 88.89%
	Converse: If $Q \Rightarrow P$ (C)	
4.	$\int \frac{4x^3}{1+x^8} dx = \int \frac{4x^3}{1+\left(x^4\right)^2} dx$	Correct answer: 88.89%
	$=\tan^{-1}\left(x^{4}\right)+C$ (D)	

5.	Ends ∫Im(z) ►	Correct answer: 88.89%
	a	
	Starts	
	$ \begin{array}{c c} 0 \\ \hline \\$	
64		
1.0	Anticlockwise direction i.e. positive direction	
	So $\arg(z+ai) - \arg(z-a) = \frac{\pi}{6}$	
	$(z+ai)$ π	
	$\arg\left(\frac{z-a}{z-a}\right) = \frac{-6}{6}$ (D)	
6	C	Correct answer: 100%
0.	$\ln x dx = uv - u'v dx \text{where } u = \ln x v' = 1$	
	$u = \frac{1}{x} \forall = x$	
	$= x \ln x - \int 1 dx$	
	$= x \ln x - x + C \tag{C}$	
7.	$x^2 + x^2 + z^2 - 4x + 10z + 20 = 0$	Correct answer: 77.78%
	x + y + z - 4x + 10z + 20 = 0	
	$x^{2} - 4x + y^{2} + z^{2} + 10z = -20$	
	$x^{-} - 4x + 4 + y^{-} + z^{-} + 10z + 25 = -20 + 4 + 25$	
	$(x-2)^2 + y^2 + (z+5)^2 = 9$	
	Centre $(2, 0, -5)$, radius = 3 units	
	In vector form: $\begin{vmatrix} r \\ - \end{vmatrix} = 0 \begin{vmatrix} s \\ - \end{vmatrix} = 3$ (A)	
8.	$e^{i3\theta} + e^{i\theta} - \operatorname{cis} 3\theta + \operatorname{cis} \theta$	Correct answer: 61.11%
	$= (\cos 3\theta + \cos \theta) + i(\sin 3\theta + \sin \theta)$	
	$(3\theta + \theta) (3\theta - \theta)$	
	$=2\cos\left(\frac{1}{2}\right)\cos\left(\frac{1}{2}\right)$	
	$+2i\sin\left(\frac{3\theta+\theta}{2}\right)\cos\left(\frac{3\theta-\theta}{2}\right)$	
	$= 2\cos 2\theta \cos \theta + 2i\sin 2\theta \cos \theta$	
	$= 2\cos\theta(\cos 2\theta + i\sin 2\theta)$	
	$= 2\cos\theta e^{i2\theta} \tag{B}$	

QUESTION 11 (a)

(i)	$z_1 = -\sqrt{2} + \sqrt{2}i$ $ z_1 = \sqrt{(-\sqrt{2})^2 + (\sqrt{2})^2}$ and $\arg z_1 = \tan^{-1}\left(\frac{\sqrt{2}}{-\sqrt{2}}\right)$ (QII)	(QII) - Need to pay attention to which component has a negative value as this affects the argument of the complex number.
	$=\sqrt{2+2} \qquad \qquad = \pi - \frac{\pi}{4}$ $= 2 \qquad \qquad = \frac{3\pi}{4}$	
	$\therefore z_1 = 2 \operatorname{cis} \frac{3\pi}{4}$	
	$z_2 = \sqrt{3} + i$ $ z_2 = \sqrt{(\sqrt{3})^2 + (\sqrt{1})^2}$ and $\arg z_2 = \tan^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (QI)	
	$=\sqrt{3+1} \qquad \qquad =\frac{\pi}{6}$	
	$\therefore z_2 = 2 \operatorname{cis} \frac{\pi}{6}$	
(ii).	-2 -2 -2 -2 -2 -2 -2 -2	Even though the question specifically stated using vectors, only 44% complied. If using argument on the Argand diagram, students should have an open circle at the origin. This is poorly done. Future recommendation: since both moduli are of the same length, in future draw a circle in dashed line.
(iii)	$\therefore \arg\left(\frac{z_1}{z_2}\right) = \arg z_1 - \arg z_2$ $= \frac{3\pi}{4} - \frac{\pi}{6}$ $= \frac{9\pi - 2\pi}{12}$ $= \frac{7\pi}{12}$	Mostly done well.

QUESTION 11 (a)

QUESTION 11 (b)

$\int \sin^3 x \cos^7 x dx = \int \sin^2 x \cos^7 x \sin x dx$	Disappointing performance for a straight forward question.
$= \int \left(1 - \cos^2 x\right) \cos^7 x \sin x dx$	
$= \int \left(\cos^7 x - \cos^9 x\right) \sin x dx$	
$= -\int \left(\cos^7 x - \cos^9 x\right) \left(-\sin x\right) dx$	
$= -\frac{\cos^8 x}{8} + \frac{\cos^{10} x}{10} + C$	
$\mathbf{OR} \int \sin^3 x \cos^7 x dx = \int \sin^3 x \cos^3 x \cos^4 x dx$	An attempt to make it a double angle trigonometry but got
$= \int (\sin x \cos x)^3 \cos^4 x dx$	lost. – Not an efficient method.
$=\frac{1}{8}\int (\sin 2x)^3 \cos^4 x dx$	
$=\frac{1}{8}\int\sin^3 2x\left(\cos^2 x\right)^2dx$	
$=\frac{1}{8}\int\sin^3 2x \left[\frac{1}{2}(1+\cos 2x)\right]^2 dx$	

QUESTION 11 (b) continues

$$= \frac{1}{8} \int \sin^{3} 2x \left[\frac{1}{4} (1 + \cos 2x)^{2} \right] dx$$

$$= \frac{1}{32} \int \sin^{2} 2x (1 + \cos 2x)^{2} \sin 2x \, dx$$

$$= \frac{1}{32} \int (1 - \cos^{2} 2x) (1 + \cos 2x)^{2} \sin 2x \, dx$$

$$= \frac{1}{32} \int (1 - \cos^{2} 2x) (1 + 2\cos 2x + \cos^{2} 2x) \sin 2x \, dx$$

$$= \frac{1}{32} \int (1 + 2\cos 2x + \cos^{2} 2x - \cos^{2} 2x - 2\cos^{3} 2x - \cos^{4} 2x) \sin 2x \, dx$$

$$= \frac{1}{32} \int (1 + 2\cos 2x - 2\cos^{3} 2x - \cos^{4} 2x) \sin 2x \, dx$$

$$= \frac{1}{32} \int \sin 2x \, dx + \frac{1}{32} \int (2\cos 2x - 2\cos^{3} 2x - \cos^{4} 2x) \sin 2x \, dx$$

$$= \frac{-\frac{1}{32} \left(\frac{\cos 2x}{2} \right) - \frac{1}{32} \int (2\cos 2x - 2\cos^{3} 2x - \cos^{4} 2x) \sin 2x \, dx$$

$$= -\frac{-\frac{\cos 2x}{64} - \frac{1}{32} \left(\frac{\sin^{2} 2x}{2 \times 2} - 2\frac{(\sin^{4} 2x)}{2 \times 4} - \frac{\sin^{5} 2x}{2 \times 5} \right) + C$$

$$= -\frac{\cos 2x}{64} - \frac{\sin^{2} 2x}{128} + \frac{\sin^{4} 2x}{128} + \frac{\cos^{5} 2x}{320} + C$$

QUESTION 11 (c)

$$\int \frac{dx}{\sqrt{e^{2x} - 1}} \text{ where } u = \frac{1}{e^x} \Leftrightarrow e^x = \frac{1}{u}$$

$$x = \ln \frac{1}{u}$$

$$x = \ln u$$

$$x = -\ln u$$

$$\frac{dx}{du} = -\frac{1}{u}$$

$$dx = -\frac{1}{u} du$$

$$= \int \frac{-\frac{1}{u} du}{\sqrt{\left(\frac{1}{u}\right)^2 - 1}}$$
Few students got full mark. Area of concern are:
(1) Students having substitution problem
(2) Students not recognising that
$$\int -\frac{1}{\sqrt{1 - u^2}} du = \cos^{-1} u + C$$

$= -\int \frac{\frac{1}{u}}{\sqrt{\frac{1}{u^2} - 1}} du$	
$= -\int \frac{\frac{1}{u}}{\sqrt{\frac{1-u^2}{u^2}}} du$	
$= -\int \frac{\frac{1}{u}}{\frac{\sqrt{1-u^2}}{u}} du$	
$=\int -\frac{1}{\sqrt{1-u^2}}du$	
$=\cos^{-1}u+C$	
$=\cos^{-1}\left(\frac{1}{e^x}\right) + C$	

QUESTION 11 (d)

(i)	$\left(\cos\theta + i\sin\theta\right)^5 = \cos^5\theta + 5i\cos^4\theta\sin\theta - 10\cos^3\theta\sin^2\theta$	Mostly done well.
	$-10i\cos^2\theta\sin^3\theta + 5\cos\theta\sin^4\theta + i\sin^5\theta$	
	By de Moirve's theorem,	
	$\cos 5\theta + i \sin 5\theta = \cos^5 \theta + 5i \cos^4 \theta \sin \theta - 10 \cos^3 \theta \sin^2 \theta$	
	$-10i\cos^2\theta\sin^3\theta + 5\cos\theta\sin^4\theta + i\sin^5\theta$	
	Equating real terms,	
	$\cos 5\theta = \cos^5 \theta - 10\cos^3 \theta \sin^2 \theta + 5\cos \theta \sin^4 \theta$	
	$=\cos^{5}\theta-10\cos^{3}\theta\left(1-\cos^{2}\theta\right)+5\cos\theta\left(1-\cos^{2}\theta\right)^{2}$	
	$=\cos^5\theta-10\left(\cos^3\theta-\cos^5\theta\right)$	
	$+5\cos\theta \left(1-2\cos^2\theta+\cos^4\theta\right)$	
	$= \cos^5 \theta - 10 \cos^3 \theta$	
	$+10\cos^5\theta$	
	$+5\cos^5\theta$ $-10\cos^3\theta$ $+5\cos\theta$	

QUESTION 11 (d) continues

QUESTION 11 (d) continues

(ii)	$-\left(\cos\frac{\pi}{5}\right)\left(\cos\frac{3\pi}{5}\right)\left(\cos\frac{3\pi}{5}\right)\left(\cos\frac{\pi}{5}\right) = -\frac{1}{16}$	
	$\left(\cos\frac{\pi}{5}\right)^2 \left(\cos\frac{3\pi}{5}\right)^2 = \frac{1}{16}$	
	$\left(\cos\frac{\pi}{5}\cos\frac{3\pi}{5}\right)^2 = \frac{1}{16}$	
	$\cos\frac{\pi}{5}\cos\frac{3\pi}{5} = \pm\frac{1}{4}$	
	Since $\cos\frac{\pi}{5} > 0$ and $\cos\frac{3\pi}{5} < 0$,	
	$\because \cos\frac{\pi}{5}\cos\frac{3\pi}{5} = -\frac{1}{4}$	

QUESTION 12 (a)

To prove by contradiction that $\log_5 7$ is irrational.	Disappointing performance;
<u>Proof</u> : Assume that $\log_5 7$ is rational	Areas of concern: (1) students did not notice importance of the word
i.e. $\exists \{p, q\} \in N$, $\log_5 7 = \frac{p}{q}$ where p and q are relative	:Assume" in the contradiction method.
primes.	be succinct.
$q \log_5 7 = p$	
$\log_5 7^q = p$	
$7^{q} = 5^{p}$	
LHS = 7^q	
$= 7 \times 7 \times 7 \times$ i.e. 7 is a factor of LHS	
$RHS = 5^p$	
$=5 \times 5 \times 5 \times$ i.e. 5 is a factor of RHS	
but clearly neither 7 is not a factor of RHS nor 5 is a	
factor of LHS so there is a contradiction.	
Hence $\log_5 7$ is irrational.	

QUESTION 12 (b)

Let
$$I = \int \sec^3 x \, dx$$

 $= \int \sec^2 x \sec x \, dx$
 $= uv - \int u'v \, dx$ where $u = \sec x$ and $v' = \sec^2 x$
 $u' = \sec x \tan x$, $v = \tan x$
 $= \sec x \tan x - \int \sec x (\sec^2 x - 1) \, dx$
 $= \sec x \tan x - \int \sec x (\sec^2 x - 1) \, dx$
 $= \sec x \tan x - \int \sec^3 x \, dx + \int \sec x \, dx$
 $I = \sec x \tan x - \int \sec^3 x \, dx + \int \sec x \, dx$
 $I = \sec x \tan x - \int \sec^3 x \, dx + \int \sec x \, dx$
 $I = \sec x \tan x - \int \sec^2 x + \tan x \, dx$
 $2I = \sec x \tan x + \int \frac{\sec^2 x + \sec x \tan x}{\sec x + \tan x} \, dx$
 $2I = \sec x \tan x + \ln|\sec x + \tan x|$
 $\therefore I = \frac{1}{2} \sec x \tan x + \frac{1}{2} \ln|\sec x + \tan x| + C$

QUESTION 12 (c)

Given ω is the complex cube root of unity	Mostly done well.
i.e. $z^3 = 1$	
$\omega^3 = 1$	
$\omega^3 - 1 = 0$	
$(\omega - 1)(1 + \omega + \omega^2) = 0$ but $\omega \neq 1$	
$\therefore 1 + \omega + \omega^2 = 0$	
$1 + \omega = -\omega^2$ or $\omega + \omega^2 = -1$ or $1 + \omega^2 = -\omega$	

QUESTION 12 (c) continues

$\therefore (1-3\omega+\omega^2)(1+\omega-8\omega^2) = ((1+\omega^2)-3\omega)((1+\omega)-8\omega^2)$	
$=(-\omega-3\omega)(-\omega^2-8\omega^2)$	
$=(-4\omega)(-9\omega^2)$	
= $36\omega^3$ and since $\omega^3 = 1$	
= 36	

QUESTION 12 (d)

(i)	·∫y	Done well.
	B = (-2, 4)	
	A - (-0, 2)	
	x	
	0	
	$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$	
	$=\begin{bmatrix} -2\\4 \end{bmatrix} - \begin{bmatrix} -6\\2 \end{bmatrix}$	
	$= \begin{vmatrix} 4\\2 \end{vmatrix}$	
	$\overrightarrow{AB} = 4 \pm 2i$	
	$AD - 4 \pm 2i$	
		Martha lana mall
	OC = OA + AC where $ AC = 2 AB $	Areas of concern:
	$\overrightarrow{AC} = 2 \operatorname{cis}\left(-\frac{\pi}{2}\right)(4+2i)$	(i) $ \overrightarrow{AC} = 2 \overrightarrow{AB} $ does not mean
	$\left(\frac{1}{6}\right)$	
	$-2\left(\sqrt{3}-\frac{1}{i}\right)(4+2i)$	AC = 2AB (ii) Some students are
	$-2\left(\frac{1}{2}-\frac{1}{2}i\right)(1+2i)$	forgetting \overrightarrow{AC} and \overrightarrow{OC} are
	$=(\sqrt{3}-i)(4+2i)$	two different vectors.
		(iii) Some students did not pay
	$= 4\sqrt{3} + 2\sqrt{3l} - 4l + 2$	attention to the fact that $$
	$= (4\sqrt{3}+2)+(2\sqrt{3}-4)i$	AB is rotated 30°
		clockwise hence (-30°) to
		obtain \overrightarrow{AC} .

Step 1: To prove true for $n = 2$	Mostly done well.
LHS $= 3^2$	
= 9	
RHS = 2 = 2(2) + 1	
= 5	
\therefore LHS > RHS	
Hence true for $n = 2$	
Step 2: Assume true for $n = k$ where $k = 2, 3, 4,$	
$3^k > 1 + 3k$	
Step 3: To prove true for $n = k + 1$	
$3^{k+1} > 1 + 3(k+1)$	
$LHS = 3^{k+1}$	
$= 3 \times 3^k$	
> 3(1+3k) Assumption for $n = k$	
> 3(1 + k + 2k)	
$> 3 \times 2k + 3(k+1)$ also $3 \times 2k > 1$	
> 1 + 3(k + 1)	
= RHS	
If true for $n = k$, hence proven true for $n = k + 1$.	
Step 4: Since true for $n = 2$, hence proven true for $n = 2 + 1 = 3$,	
$n = 3 + 1 = 4$, and so on. \therefore true for all positive integers	
n > 1.	

QUESTION 13 (a)

$\int 1$ L Let $(-1)^{x}$	Mostly done well.
$\frac{1}{1+2\sin x - \cos x} dx$ Let $t = \tan \frac{1}{2}$	Areas of concern:
	(i) A few students did not
$\frac{x}{-} = \tan^{-1} t$	recognise the fact that the
2	denominator of integrand can
$\mathbf{r} = 2 \tan^{-1} t$	be factorised, hence
dr 2	subsequent method to use is
$\frac{dx}{dt} = \frac{2}{t^2}$	partial fraction.
$dt = 1+t^2$	(ii) Some students did not learn
$dx = \frac{2}{1+t^2} dt$	how to differentiate $t = \tan \frac{x}{2}$
$= \int \frac{1}{1+2\left(\frac{2t}{1+t^2}\right) - \frac{1-t^2}{1+t^2}} \frac{2}{1+t^2} dt$	(iii) Some students did not even realised they have not completed because their answer is in terms of t and
	not r
$=$ $\frac{1}{2}$ $\frac{2}{2}$ dt	
$\int_{1} 4t 1-t^2 1+t^2$	
$1 + \frac{1}{1+t^2} - \frac{1}{1+t^2}$	

QUESTION 13 (a) continues

$$= \int \frac{1}{(1+t^{2})^{2} + 4t - (1-t^{2})} \frac{2}{1+t^{2}} dt$$

$$= \int \frac{2}{1+t^{2} + 4t - 1+t^{2}} dt$$

$$= \int \frac{2}{2t^{2} + 4t} dt$$

$$= \int \frac{1}{2t^{2} + 4t} dt$$

$$= \int \frac{1}{t^{2} + 2t} dt$$

$$= \int \frac{4}{t} + \frac{B}{t+2} dt \text{ where } \frac{1}{t(t+2)} = \frac{4}{t} + \frac{B}{t+2}$$

$$1 = A(t+2) + Bt$$

$$\text{when } t = 0, 1 = 2A$$

$$A = \frac{1}{2}$$

$$When \quad t = -2, 1 = -2B$$

$$B = -\frac{1}{2}$$

$$= \frac{1}{2} \int \frac{1}{t} - \frac{1}{t+2} dt$$

$$= \frac{1}{2} [\ln|t| - \ln|t+2|] + C$$

$$= \frac{1}{2} [\ln|\tan\frac{x}{2}| - \ln|\tan\frac{x}{2} + 2|] + C$$

$$= \frac{1}{2} \ln|\tan\frac{x}{2}| - \frac{1}{2} \ln|\tan\frac{x}{2} + 2| + C \text{ or } \frac{1}{2} \ln\left|\frac{\tan\frac{x}{2}}{\tan\frac{x}{2} + 2}| + C$$

QUESTION 13 (b)

QUESTION 13 (c)

$2r^{1}$	Mostly done well.
$\int \frac{4x-1}{x^2+2x+6} dx = 2 \int \frac{2x-\frac{1}{2}}{x^2+2x+6} dx$	
$=2\int \frac{2x+2-\frac{1}{2}-2}{x^2+2x+6}dx.$	
$=2\int \frac{(2x+2)-\frac{5}{2}}{x^2+2x+6}dx$	
$=2\int \frac{(2x+2)}{x^2+2x+6} dx - 2\int \frac{5}{x^2+2x+6} dx$	
$= 2\ln\left x^{2} + 2x + 6\right - 2\left(\frac{5}{2}\right)\int \frac{1}{x^{2} + 2x + 6} dx$	
$= 2\ln\left x^{2} + 2x + 6\right - 5\int \frac{1}{\left(x^{2} + 2x + 1\right) + 6 - 1} dx$	
$= 2\ln x^{2} + 2x + 6 - 5\int \frac{1}{(x+1)^{2} + 5} dx$	
where $f(x) = x+1$	
f'(x) = 1	
$a = \sqrt{5}$	

QUESTION 13 (c) continues

$$= 5 \ln \left| x_{5} + 5x + 6 \right| - \sqrt{2} \tan_{-1} \frac{\sqrt{2}}{x + 1} + C$$

$$= 5 \ln \left| x_{5} + 5x + 6 \right| - \frac{\sqrt{2}}{2} \int \frac{(x + 1)_{5} + 2}{1 \times \sqrt{2}} dx$$

٦

	$!\mathcal{I} / \mathcal{I} = \mathcal{G}'$	
	$ \zeta = \zeta'$	
	$0 = \partial_t + \omega \Sigma$	
	$\frac{\mathcal{D}}{\mathcal{D}} = \mathcal{G} + \mathcal{D} + \mathcal{D}$	
	$\frac{9}{17}$ $\frac{17}{10}$ $\frac{17}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{1}{10}$	
	0 = 17 At = 70 + 7 = (7) I 127	
	$0 - \frac{1}{2} \frac{1}{2} \sqrt{29} + \frac{1}{2} \frac{1}{2} - \frac{1}{2} \frac{1}{4} = 1$	
	.: iVI is a root.	
	$0 \neq (2 \land i -) d ::$	
	$=5\sqrt{5!}-6\sqrt{5!}-4\sqrt{5!}$	
	$D_{\mathbf{L}} = \frac{\mathbf{L}}{\mathbf{L}} = \frac$	
	$O = (2\sqrt{2}) d$	
	$=-5\sqrt{2i}+6\sqrt{2i}-4\sqrt{2i}$	
	$\frac{1}{2} - \frac{1}{2} - \frac{1}$	
	$\zeta = \pi i \Lambda i = \omega : \Box$	
	$\alpha_{\tau} = -7$	
	$3\alpha^{7} = -6$	
	$0 = 9 + \frac{2}{7} \mathcal{D}\xi$	
	$9 + z \xi = (z) \cdot d$	
	$D = (\alpha) \cdot P \cdot (\alpha) = 0$	
P(z).	(z) (z) (z) (z) (z) (z)	
are valid roots of	(d - z) $(z - z)$ (z) (z) (z)	
that only $i\sqrt{2}$ is the only root.	$(\vartheta - z)^2(\vartheta - z) = (z)^2 \theta^2 \theta^2$	
Many students did not check	Let $P(z) = z^3 + 6z - 4\sqrt{2}i$	
Area of concern.	$(g'-z)_{z}(z-\alpha)_{z} = (z-\alpha)_{z}(z-\beta)$	

Г

QUESTION 13 (e)

(i)	$x = \lambda + 1$	A few students did not know
	$y = \lambda$	what to do.
	$z = 2\lambda + 3$	
	$ v-c = \sqrt{29}$	
	$\left(\lambda+1\right)\left(2\right)$	
	λ $-1 = \sqrt{29}$	
	$(2\lambda+3)$ (0)	
	$\begin{pmatrix} \lambda - 1 \end{pmatrix}$	
	$\lambda + 1 = \sqrt{29}$	
	$(2\lambda+3)$	
	$(\lambda - 1)^{2} + (\lambda + 1)^{2} + (2\lambda + 3)^{2} = 29$	
	$6\lambda^2 + 12\lambda - 18 = 0$	
	$\lambda^2 + 2\lambda - 3 = 0$	
	$\lambda = -3, \ \lambda = 1$	
h 1 0	$\therefore P: (-2, -3, -3), Q: (2, 1, 5)$	
(ii)	Since the line is parallel to L and tangent to the	Poor performance.
	sphere at R , CR will be perpendicular to L and bisect RO . Let M be the mid point of RO and	
	hence, the intersection point of PQ and CR.	
	Therefore:	
	P: (-2, -3, -3), Q: (2, 1, 5), C: (2, -1, 0)	
	M:(0,-1,1)	
	(-2)	
	$\overrightarrow{CM} = 0$	
	(1)	
	As \overline{CR} is an extension of \overline{CM} with a length	
	of $\sqrt{29}$.	
	(-2)	
	$\overline{CR} = \begin{bmatrix} 29 \\ 0 \end{bmatrix}$	
	V 5 1	
	(-2) (2)	
	$\overline{OR} = \begin{bmatrix} 29 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ -1 \end{bmatrix}$	
	V 5 1 0	
	$R: \left[2-2\sqrt{\frac{29}{5}}, -1, \sqrt{\frac{29}{5}}\right]$	

$$\begin{aligned} &= \frac{e}{x} - \frac{5\sqrt{32}}{x} - \frac{3}{1} \left[\frac{3}{5} + \ln \left(\frac{3}{2} \right) \right] \\ &= \frac{e}{x} - \frac{5\sqrt{32}}{x} - \frac{3}{1} \left[\frac{3}{5} + \ln \left(5 \left(\frac{3}{5} \right) \right) \right] \\ &= \frac{e}{x} - \frac{5\sqrt{32}}{x} - \frac{3}{1} \left[\frac{3}{2} + \ln \left(5 \left(\frac{3}{2} \right) - \ln \left| 1 + \left(1 \right) \right| - \left(\left(\frac{3}{2} \right) - \ln \left| 1 + \left(\frac{3}{1} \right) \right| \right) \right] \\ &= \frac{e}{x} - \frac{5\sqrt{32}}{x} - \frac{3}{1} \left[(1) - \ln \left| 1 + \left(1 \right) \right| - \left(\left(\frac{3}{2} \right) - \ln \left| 1 + \left(\frac{3}{1} \right) \right| \right) \right] \\ &= \frac{2}{y} \left[\frac{4}{x} - \frac{3\sqrt{32}}{1} - \frac{3}{2} \left[(1) - \ln \left| 1 + \left(1 \right) \right| - \left(\left(\frac{3}{2} \right) - \ln \left| 1 + \left(\frac{3}{1} \right) \right| \right] \right] \\ &= \frac{3}{2} \left[\left[\frac{4}{x} - \frac{3\sqrt{32}}{1} - \frac{3}{2} \left[(1) \sqrt{(1)} + \ln \left(- \frac{\sqrt{32}}{1} \right] - \frac{3}{2} \right] \frac{1}{7} \left[\frac{1}{x} + \frac{1}{x} \right] \\ &= \frac{3}{2} \left[\left[\ln \sqrt{(1)} + \ln \left(- \frac{\sqrt{32}}{1} \right] - \frac{3}{7} \right] \frac{1}{7} \left[\frac{1}{x} - \frac{1}{1} + \frac{1}{x} \right] \\ &= \frac{3}{2} \left[\left[\ln \sqrt{(1)} + \ln \left(- \frac{\sqrt{32}}{1} \right] - \frac{3}{7} \right] \frac{1}{7} \left[\frac{1}{7} - \frac{1}{1} + \frac{1}{x} \right] \\ &= \frac{3}{2} \left[\left[\ln \sqrt{(1)} + \ln \left(- \frac{\sqrt{32}}{1} \right] - \frac{3}{7} \right] \frac{1}{7} \frac{1}{7} \frac{1}{7} + \frac{1}{7} + \frac{1}{7} \\ &= \frac{1}{7} \\ &= \frac{1}{7} \left[\frac{1}{x} - \frac{1}{x} + \frac{1}{1} \right] \\ &= \frac{1}{7} \left[\frac{1}{x} - \frac{1}{x} + \frac{1}{1} \right] \\ &= \frac{1}{7} \left[\frac{1}{x} - \frac{1}{1} + \frac{1}{7} \right] \\ &= \frac{1}{7} \left[\frac{1}{1} - \frac{1}{7} + \frac{1}{7} \right] \\ &= \frac{1}{7} \left[\frac{1}{1} - \frac{1}{7} + \frac{1}{7} \right] \\ &= \frac{1}{7} \left[\frac{1}{1} - \frac{1}{7} + \frac{1}{7} + \frac{1}{7} \right] \\ &= \frac{1}{7} \left[\frac{1}{1} - \frac{1}{7} + \frac{1}{7} + \frac{1}{7} \right] \\ &= \frac{1}{7} \left[\frac{1}{1} - \frac{1}{7} + \frac{1}{7} + \frac{1}{7} \right] \\ &= \frac{1}{7} \left[\frac{1}{1} - \frac{1}{7} + \frac{1}{7} + \frac{1}{7} \right] \\ &= \frac{1}{7} \left[\frac{1}{1} - \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} \right] \\ &= \frac{1}{7} \left[\frac{1}{1} - \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} \right] \\ &= \frac{1}{7} \left[\frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} + \frac{1}{7} \right] \\ &= \frac{1}{7} \left[\frac{1}{7} + \frac{1}{7}$$

QUESTION 14 (a)cont.

QULDI								
	$-\pi$	π	2	$\frac{1}{\ln(8)}$				
	- 6	$\overline{27\sqrt{3}}$	9	$\overline{3}^{\text{III}}(\overline{3})$				

QUESTION 14 (b)

	3	Mostly done well.
	$\sqrt{2}$	Area of concern:
	$\frac{dx}{dx}$ where $x = 3\sin\theta$	1 2 2
	$(0, -2)^{\frac{3}{2}}$	$\frac{1}{9 \cos^2 x} = 9 \sec^2 x$
	$\frac{1}{0}(9-x)$	900s x
	dx	
	$\frac{d\theta}{d\theta} = 3\cos\theta$	
	$dx = 3\cos\theta \ d\theta$	
	When $r = \frac{3}{\alpha - \pi}$	
	when $x = \frac{1}{\sqrt{2}}$, $b = \frac{1}{4}$	
	$r = 0$ $\theta = 0$	
	x - 0 0 - 0	
	$\frac{\pi}{4}$	
	$\cos\theta d\theta$	
	$=3 \int \frac{1}{(2 - 2)^{\frac{3}{2}}}$	
	$\int_{0}^{\bullet} (9-9\sin^2\theta)^2$	
	π	
	$\frac{\pi}{4}$	
	$-2\int \cos\theta d\theta$	
	$= 5 \int \frac{1}{(1 + (1 + 1)^2)^{\frac{3}{2}}}$	
	$\int_{0}^{\bullet} (9(1-\sin^2\theta))^2$	
	π	
	$\frac{\pi}{4}$	
	$\cos\theta d\theta$	
	$= 5 \int \frac{1}{(2^2 - 2)^3} dx^3$	
	$\int_{0}^{\bullet} \left(3^{2}\cos^{2}\theta\right)^{2}$	
	π	
	4	
	$=3\int \frac{\cos\theta}{d\theta} d\theta$	
	$27\cos^3\theta$	
	0	
	$\frac{\pi}{2}$	
	1 f 1	
	$=\frac{1}{2}\left[\frac{1}{2}d\theta\right]$	
	$9 \int \cos^2 \theta$	
	ν π	
	$\frac{\pi}{4}$	
	$1\int_{1}^{1} dt dt$	
	$=\frac{1}{9}$ sec $\theta a\theta$	
	0	
	1 $\int dz = dz$	
	$=\frac{1}{9} [\tan \theta]_0^4$	
1		

QUESTION 14 (b) continues

$=\frac{1}{9}\left[\tan\frac{\pi}{4}-0\right]$		-
$=\frac{1}{9}$		

QUESTION 14 (c)

$\left \overrightarrow{BC}\right = \frac{1}{2} \left \overrightarrow{AB}\right (B \text{ divides } AC \text{ into a ratio of } 2:1)$	Mostly done well.	
$\varphi - b = \frac{1}{2}(b - a)$		
$c = \frac{1}{2}(b - a) + b$		
$=\frac{3}{2}b-\frac{1}{2}a$		V
2~ 2~		

QUESTION 14 (d)

(i)	For all $x \ge 0$, $y \ge 0$, $(x-y)^2 \ge 0$	Mostly done well.
	$x^2 - 2xy + y^2 \ge 0$	
	$x^2 + y^2 \ge 2xy$	
	$\therefore \frac{x^2 + y^2}{2} \ge xy \text{(as required)}$	
(ii)	Substituting $x = a^2$ and $y = b^2$ into part (i),	Mostly done well.
	$\frac{\left(a^2\right)^2 + \left(b^2\right)^2}{2} \ge \left(a^2\right)\left(b^2\right)$	
	$\frac{a^4 + b^4}{2} \ge a^2 b^2$	
	$\therefore a^4 + b^4 \ge 2a^2b^2 - \mathbb{O}$	
	Similarly $b^4 + c^4 \ge 2b^2c^2 - 0$	
	$c^{+} + a^{+} \ge 2c^{2}a^{2}$ — (3)	
	$ (1 + 2 + 3) \qquad 2a^4 + 2b^4 + 2c^4 \ge 2a^2b^2 + 2b^2c^2 + 2c^2a^2 $	
	: $a^4 + b^4 + c^4 \ge a^2b^2 + b^2c^2 + c^2a^2$ (as req'd)	
4 L		

QUESTION 14 (d)

(iii)	From part (i) $x^2 + y^2 \ge 2xy$	Students that know it,
	Let $x = a$ and $y = b$, $a^2 + b^2 \ge 2ab$	know what to do.
	$c^2 \left(a^2 + b^2 \right) \ge 2abc^2 - \mathbb{O}$	
	Similarly $a^2(b^2+c^2) \ge 2bca^2 - \mathbb{Q}$	
	$b^2(c^2+a^2) \ge 2cab^2$ — ③	
	(1) + (2) + (3)	
	$c^{2}(a^{2}+b^{2})+a^{2}(b^{2}+c^{2})+b^{2}(c^{2}+a^{2}) \ge 2(abc^{2}+bca^{2}+cab^{2})$	
	$c^{2}a^{2} + c^{2}b^{2} + a^{2}b^{2} + a^{2}c^{2} + b^{2}c^{2} + b^{2}a^{2} \ge 2\left(abc^{2} + bca^{2} + cab^{2}\right)$	
	$2a^{2}b^{2} + 2b^{2}c^{2} + 2c^{2}a^{2} \ge 2\left(abc^{2} + bca^{2} + cab^{2}\right)$	
	: $a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2} \ge c^{2}ab + a^{2}bc + b^{2}ca$	
	(as required)	
(iv)	From part (ii) $a^4 + b^4 + c^4 \ge a^2b^2 + b^2c^2 + c^2a^2$	Students that know it,
	From part (iii) $a^2b^2 + b^2c^2 + c^2a^2 \ge c^2ab + a^2bc + b^2ca$	permed well. 40% did not know what to do
	$a^{4} + b^{4} + c^{4} \ge a^{2}b^{2} + b^{2}c^{2} + c^{2}a^{2} \ge c^{2}ab + a^{2}bc + b^{2}ca$	
	$\therefore a^4 + b^4 + c^4 \ge c^2 ab + a^2 bc + b^2 ca$	
	$\therefore a^4 + b^4 + c^4 \ge cab(c+a+b)$	
	Since $a+b+c=d$	
	$\therefore a^4 + b^4 + c^4 \ge cabd$ (as required)	

QUESTION 15 (a)

(i)	$\left(x-2\right)^2 \ge 0, x \ge 0$	Mostly done well.
	$x^2 - 4x + 4 \ge 0$	Area of concern: students not mentioning $x \ge 0$
	$x^2 + 4 \ge 4x$	
	$1 \ge \frac{4x}{x^2 + 4}$	
	$\frac{1}{4} \ge \frac{x}{x^2 + 4}$	
	$\therefore \frac{x}{x^2 + 4} \le \frac{1}{4} \qquad \text{(as required)}$	

QUESTION 15 (a)

(ii)	$\frac{x}{x^2+4} \le \frac{1}{4} \qquad [\text{from part (i)}]$	Mostly done well. Area of concern: Poor
	$\int_{0}^{\alpha} \frac{x}{x^{2}+4} dx \le \int_{0}^{\alpha} \frac{1}{4} dx \text{ where } \alpha \ge 0$	$\frac{1}{2}\ln(x^2 + 4) \neq \frac{1}{2}\ln x^2 + \ln 2$
	$\frac{1}{2} \int_{0}^{\alpha} \frac{2x}{x^2 + 4} dx \le \frac{1}{4} \int_{0}^{\alpha} 1 dx$	
	$\frac{1}{2} \left[\ln\left(x^2 + 4\right) \right]_0^\alpha \le \frac{1}{4} \left[x\right]_0^\alpha$	
	$\ln\left(\alpha^2+4\right)-\ln 4\leq\frac{1}{2}\alpha$	
	$\ln\!\left(\frac{\alpha^2+4}{4}\right) \le \frac{1}{2}\alpha$	
	$\frac{\alpha^2 + 4}{4} \le e^{\frac{1}{2}\alpha} $ (Since $f(x) = e^x$ is an increasing	
	function)	
	$\frac{\alpha^2}{4} + \frac{4}{4} \le e^{\frac{1}{2}\alpha}$	
	$\therefore e^{\frac{1}{2}\alpha} \ge \frac{\alpha^2}{4} + 1 \text{ (as required)}$	

QUESTION 15 (b)

$\omega = \frac{z-2}{z}$ Let $z = x + iy$	Many students did not know what to do.
$\omega = 1 - \frac{2}{z}$	
$=1 - \frac{2}{x + iy} \times \frac{x - iy}{x - iy}$	
$=1-\frac{2(x-iy)}{x^2+y^2}$	
$=1 - \frac{2x}{x^2 + y^2} + \frac{2iy}{x^2 + y^2}$	
Since ω is purely imaginary, i.e. $\operatorname{Re}(\omega) = 0$	
$\therefore 1 - \frac{2x}{x^2 + y^2} = 0$	

QUESTION 15 (b) continues

$\frac{x^2 + y^2 - 2x}{x^2 + y^2} = 0$	
$x^2 + y^2 - 2x = 0$	
$x^2 - 2x + y^2 = 0$	
$x^2 - 2x + 1 + y^2 = 0 + 1$	
$\left(x-1\right)^2 + y^2 = 1$	
$\therefore z-1 = 1$	
Hence the locus of z is a circle of radius 1 and centre $(1, 0)$	

QUESTION 15 (d)

(i)	$z^n = \left(\cos\theta + i\sin\theta\right)^n$	
	$= \cos n\theta + i \sin n\theta$ (de Moirve's theorem)	
	$\frac{1}{z^n} = \left(\cos\theta + i\sin\theta\right)^{-n}$	
	$= \cos(-n)\theta + i\sin(-n)\theta$	
	$=\cos n\theta - i\sin n\theta$	
	$\therefore z^n - \frac{1}{z^n} = (\cos n\theta + i\sin n\theta) - (\cos n\theta - i\sin n\theta)$	
	$= \cos n\theta + i\sin n\theta - \cos n\theta + i\sin n\theta$	
	$\therefore z^n - \frac{1}{z^n} = 2i \sin n\theta \text{(as required)}$	
(ii)	$\left(z - \frac{1}{z}\right)^{5} = \binom{5}{0}z^{5} - \binom{5}{1}z^{4}\left(\frac{1}{z}\right) + \binom{5}{2}z^{3}\left(\frac{1}{z}\right)^{2} + \binom{5}{3}z^{2}\left(\frac{1}{z}\right)^{3}$	
	$+\binom{5}{4}z\left(\frac{1}{z}\right)^4 - \binom{5}{5}\left(\frac{1}{z}\right)^5$	
	$= z^{5} - 5z^{3} + 10z - 10\left(\frac{1}{z}\right) + 5\left(\frac{1}{z}\right)^{3} - \left(\frac{1}{z}\right)^{5}$	
	$\left(z - \frac{1}{z}\right)^{5} = \left(z^{5} - \frac{1}{z^{5}}\right) - 5\left(z^{3} - \frac{1}{z^{3}}\right) + 10\left(z - \frac{1}{z}\right)$	
	$(2i\sin\theta)^5 = (2i\sin 5\theta) - 5(2i\sin 3\theta) + 10(2i\sin\theta)$	
	$32i\sin^5\theta = 2i(\sin 5\theta - 5\sin 3\theta + 10\sin \theta)$	
	$16\sin^5\theta = \sin 5\theta - 5\sin 3\theta + 10\sin \theta$	
	$\therefore \sin^5 \theta = \frac{1}{16} (\sin 5\theta - 5\sin 3\theta + 10\sin \theta) \text{ (as required)}$	
(iii)	$\therefore \int \sin^5 \theta d\theta = \frac{1}{16} \int \left(\sin 5\theta - 5 \sin 3\theta + 10 \sin \theta \right) d\theta$	
	$=\frac{1}{16}\left(-\frac{\cos 5\theta}{5}+\frac{5\cos 3\theta}{3}-10\cos \theta\right)+C$	
	$= -\frac{\cos 5\theta}{80} + \frac{5\cos 3\theta}{48} - \frac{5\cos \theta}{8} + C$	

QUESTION 16 (a)

$$P(x) = 3x^{4} - 11x^{3} + 14x^{2} - 11x + 3$$

$$= x^{2} \left\{ 3x^{2} - 11x + 14 - \frac{11}{x} + \frac{3}{x^{2}} \right\}$$

$$= x^{2} \left\{ \left\{ 3x^{2} + \frac{3}{x^{2}} \right\} - \left\{ 11x + \frac{11}{x} + 14 \right\} \right\}$$

$$= x^{2} \left\{ 3\left\{ x^{2} + \frac{1}{x^{2}} \right\} - 11\left\{ x + \frac{1}{x} \right\} + 14 \right\}$$

$$= x^{2} \left\{ 3\left\{ x^{2} + \frac{1}{x^{2}} \right\} - 11\left\{ x + \frac{1}{x} \right\} + 14 \right\}$$

$$= x^{2} \left\{ 3\left\{ \left(x + \frac{1}{x} \right)^{2} - 2 \right\} - 11\left\{ x + \frac{1}{x} \right\} + 14 \right\}$$

$$= x^{2} \left\{ 3\left\{ \left(x + \frac{1}{x} \right)^{2} - 2 \right\} - 11\left\{ x + \frac{1}{x} \right\} + 14 \right\}$$

$$= x^{2} \left\{ 3\left\{ \left(x + \frac{1}{x} \right)^{2} - 2 \right\} - 11\left\{ x + \frac{1}{x} \right\} + 14 \right\}$$

$$= x^{2} \left\{ 3\left\{ x + \frac{1}{x} \right\}^{2} - 6 - 11\left\{ x + \frac{1}{x} \right\} + 14 \right\}$$

$$\therefore P(x) = x^{2} \left\{ 3\left\{ x + \frac{1}{x} \right\}^{2} - 11\left\{ x + \frac{1}{x} \right\} + 8 \right\} \text{ (as required)}$$
For
$$P(x) = x^{2} \left\{ 3\left\{ x + \frac{1}{x} \right\} - 1 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ x + \frac{1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ x + \frac{1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ x + \frac{1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ x + \frac{1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ x + \frac{1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ x + \frac{1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} + 1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} + 1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} + 1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} + 1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} + 1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} + 1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} + 1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} + 1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} + 1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} + 1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} + 1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} + 1}{x} \right\} - 8 \right\} = 0$$

$$x^{2} \left\{ \frac{x^{2} - 1}{2} - 11\left\{ \frac{x^{2} - 1}{2} - 11\left\{ \frac{x^{2} - 1}{2} - 11\left\{ \frac{x^{2} - 1}{2} - 11\right\} + 14 \right\} = 12$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} - 1}{2} - 11\left\{ \frac{x^{2} - 1}{2} - 11\right\} + 14 \right\} = 12$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} - 1}{2} - 11\left\{ \frac{x^{2} - 1}{2} - 11\right\} + 14 \right\} = 12$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} - 1}{2} - 11\right\} + 14 + 12$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} - 1}{2} - 11\right\} + 14 + 12$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} - 1}{2} - 11\right\} + 14 + 12$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} - 1}{2} - 11\right\} + 14 + 12$$

$$x^{2} \left\{ 3\left\{ \frac{x^{2} - 11}{2} - 11\right\} + 14 + 12$$

QUESTION 16 (a) continues

$$x = \frac{4 \pm \sqrt{7}}{3}$$

$$\therefore x = \frac{4 \pm \sqrt{7}}{3} \text{ or } \frac{1 \pm i\sqrt{3}}{2}$$

$$\therefore P(x) = \left(x - \frac{4 - \sqrt{7}}{3}\right) \left(x - \frac{4 + \sqrt{7}}{3}\right) (x^2 - x + 1) \text{ over } R$$

OUESTION 16 (b)

et $z = a + ib \ w = c + id$ where a, b, c and d are real. $\overline{w} = \overline{(a + ib) + (c + id)}$	
$=\overline{(a+c)+(b+d)\iota}$	
= (a+c) - (b+d)i	
= (a - ib) + (c - id)	
$= \bar{z} + \bar{w}$	

QUESTION 16 (c)

Required to prove that, for all $a \in \mathbb{N}$ such that $a^2 + 9p + 20$		
is a prime number.		
Now		
$a^2 + 9a + 20 = (a + 4)(a + 5)$		
Clearly this is a composite number.		
$a^2 + 9p + 20$ is not a prime <u>number.</u>		

QUESTION 16 (d)

(i)	$3 + 2\lambda = -1 + \mu - \mathbb{O}$		
1 1 1 1	$2 - \lambda = 1 + \mu$ — \mathbb{Q}		
	$-1+\lambda=-\mu$ -3		
	$ ()- () 1+3\lambda = -2 $		
	$3\lambda = -3$		
	$\therefore \lambda = -1 - 4$		
	Sub ④ into ① $3-2=-1+\mu$		
	$\therefore \mu = 2$		
	Sub $\lambda = -1$ and $\mu = 2$ into ③, LHS = -2		
. 6 	Sub $\lambda = -1$ and $\mu = 2$ into ③, LHS = -2		

QUESTION 16 (d) continues

QUESTION 16 (d)

(iii)	Method 1:	
	Let $P(x, y, 1 - y)$ be a point in the plane $y + z = 1$. The	
	perpendicular distance from the origin to this plane is the square	
	root of the minimum value of $ OP ^2 = x^2 + y^2 + (1-y)^2$	
	$ OP ^2 = x^2 + 2\left(y - \frac{1}{2}\right)^2 + \frac{1}{2}.$	
	The expression has a minimum value of $\frac{1}{2}$ when $x = 0$ and $y = \frac{1}{2}$.	
	Hence the perpendicular distance from the origin to the plane	
	$y + z = 1$ is $\frac{1}{\sqrt{2}}$ units.	
	Method 2:	
	Consider the vector $\begin{bmatrix} u \\ v \\ w \end{bmatrix}$ perpendicular to both $\begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$.	
	$2u - v + w = 0 \dots (1)$	
	$u + v - w = 0 \dots (2)$	
	(1) + (2) 3u = 0	
	$\therefore u = 0$	
	$\therefore v = w$	
	Hence $\begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix}$ is a vector through the origin which is perpendicular to both	
	$\begin{vmatrix} -1 \\ 1 \end{vmatrix}$ and $\begin{vmatrix} 1 \\ 1 \end{vmatrix}$, and hence to the plane defined in (ii), and meets this	
	$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix}$ plane at the point where $x = 0$ and $y = z$ and $y + z = 1$, that is the point	
	$\left(0, \frac{1}{2}, \frac{1}{2}\right)$. Hence the perpendicular distance from the origin	
	$\begin{pmatrix} 2 & 2 \end{pmatrix}$	
	to the plane in (ii) is $\sqrt{0 + \left(\frac{1}{2}\right)^2 + \left(\frac{1}{2}\right)^2} = \frac{1}{\sqrt{2}}$ units.	
	THE END	